Los más comunes son planos móviles en el perfil alar que, cuando son utilizados, modifican ciertas características de la región del ala donde se encuentran, como su curvatura o su cuerda.
Sistemas más divulgados
Los sistemas de flaps más divulgados son aquellos en que los planos hipersustentadores, a medida que bajan creando un ángulo (que se mide en grados) con la cuerda del ala, se desplazan hacia atrás aumentando la superficie alar. Es por esa razón que generalmente el índice de extensión no se mide en grados sino en porcentaje donde, por ejemplo, treinta por ciento podría significar veinte grados de deflexión, y un aumento de la superficie alar del siete por ciento.
Una clasificación muy general puede hacerse en dos grandes grupos:
Los sistemas de flaps más divulgados son aquellos en que los planos hipersustentadores, a medida que bajan creando un ángulo (que se mide en grados) con la cuerda del ala, se desplazan hacia atrás aumentando la superficie alar. Es por esa razón que generalmente el índice de extensión no se mide en grados sino en porcentaje donde, por ejemplo, treinta por ciento podría significar veinte grados de deflexión, y un aumento de la superficie alar del siete por ciento.
Una clasificación muy general puede hacerse en dos grandes grupos:
Slot
Situado en el borde de ataque del ala, dispositivo móvil que crea una ranura entre el borde de ataque del ala y el resto del plano. Cuando el dispositivo no se ha desplegado en su totalidad, o sea, que aún no se ha establecido una ranura, se denomina slat.
Situado en el borde de ataque del ala, dispositivo móvil que crea una ranura entre el borde de ataque del ala y el resto del plano. Cuando el dispositivo no se ha desplegado en su totalidad, o sea, que aún no se ha establecido una ranura, se denomina slat.
Flap
Situado en el borde de salida del ala. Aumenta el coeficiente de sustentacion, entrando en acción en momentos adecuados, cuando este vuela a velocidades inferiores a aquellas para las cuales se ha diseñado el ala, replegándose posteriormente y quedando inactivo. Los hay también de borde de ataque. Los flaps modernos de borde de salida son estructuras muy complejas formadas por dos o tres series de cada lado, y de tres o cuatro planos sucesivos, que se van escalonando y dejando una ranura entre cada uno de ellos. El efecto hipersustentador de estos sistemas es impresionante.
Situados en la parte interior trasera de las alas, se deflectan hacia abajo de forma simétrica (ambos a la vez), en uno o más ángulos, con lo cual cambian la curvatura del perfil del ala (más pronunciada en el extrados y menos pronunciada en el intrados), la superficie alar (en algunos tipos de flap) y el ángulo de incidencia, todo lo cual aumenta la sustentación (y también la resistencia).
Se accionan desde la cabina, bien por una palanca, por un sistema eléctrico, o cualquier otro sistema, con varios grados de calaje (10º, 15º, etc..) correspondientes a distintas posiciones de la palanca o interruptor eléctrico, y no se bajan o suben en todo su calaje de una vez, sino gradualmente. En general, deflexiones de flaps de hasta unos 15º aumentan la sustentación con poca resistencia adicional, pero deflexiones mayores incrementan la resistencia en mayor proporción que la sustentación.
Situado en el borde de salida del ala. Aumenta el coeficiente de sustentacion, entrando en acción en momentos adecuados, cuando este vuela a velocidades inferiores a aquellas para las cuales se ha diseñado el ala, replegándose posteriormente y quedando inactivo. Los hay también de borde de ataque. Los flaps modernos de borde de salida son estructuras muy complejas formadas por dos o tres series de cada lado, y de tres o cuatro planos sucesivos, que se van escalonando y dejando una ranura entre cada uno de ellos. El efecto hipersustentador de estos sistemas es impresionante.
Situados en la parte interior trasera de las alas, se deflectan hacia abajo de forma simétrica (ambos a la vez), en uno o más ángulos, con lo cual cambian la curvatura del perfil del ala (más pronunciada en el extrados y menos pronunciada en el intrados), la superficie alar (en algunos tipos de flap) y el ángulo de incidencia, todo lo cual aumenta la sustentación (y también la resistencia).
Se accionan desde la cabina, bien por una palanca, por un sistema eléctrico, o cualquier otro sistema, con varios grados de calaje (10º, 15º, etc..) correspondientes a distintas posiciones de la palanca o interruptor eléctrico, y no se bajan o suben en todo su calaje de una vez, sino gradualmente. En general, deflexiones de flaps de hasta unos 15º aumentan la sustentación con poca resistencia adicional, pero deflexiones mayores incrementan la resistencia en mayor proporción que la sustentación.
Dentro de esos grupos se encuentran:
Slats
Son superficies hipersustentadoras que actúan de modo similar a los flaps. Situadas en la parte anterior del ala, al deflectarse canalizan hacia el extrados una corriente de aire de alta velocidad que aumenta la sustentación permitiendo alcanzar mayores ángulos de ataque sin entrar en pérdida. Se emplean generalmente en grandes aviones para aumentar la sustentación en operaciones a baja velocidad (aterrizajes y despegues), aunque también hay modelos de aeroplanos ligeros que disponen de ellos.
En muchos casos su despliegue y repliegue se realiza de forma automática; mientras la presión ejercida sobre ellos es suficiente los slats permanecen retraídos, pero cuando esta presión disminuye hasta un determinado nivel (cerca de la velocidad de pérdida) los slats de despliegan de forma automática. Debido al súbito incremento o disminución (según se extiendan o replieguen) de la sustentación en velocidades cercanas a la pérdida, debemos extremar la atención cuando se vuela a velocidades bajas en aviones con este tipo de dispositivo.
Spoilers o aerofrenos
Al contrario que los anteriores, el objetivo de esta superficie es disminuir la sustentación del avión. Se emplean sobre todo en reactores que desarrollan altas velocidades y sirven para frenar el avión en vuelo, perder velocidad y facilitar el aterrizaje, ayudar a frenar en tierra, y en algunos aviones como complemento de los alerones para el control lateral y los virajes en vuelo.
Las superficies secundarias (flaps, slats, spoilers) siempre funcionan en pareja y de forma simétrica, es decir el accionamiento del mando correspondiente provoca el mismo movimiento (abajo o arriba) de las superficies en las dos alas (excepto en los movimientos de los spoilers complementando a los alerones).
Al afectar a la sustentación, a la forma del perfil, y a la superficie alar, el que funcione una superficie y no su simétrica puede suponer un grave inconveniente. Asimismo, tienen un límite de velocidad, pasada la cual no deben accionarse so pena de provocar daños estructurales.
Ha habido accidentes de aviones comerciales debido al despliegue inadvertido de alguna de estas superficies en vuelo, lo cual ha llevado a mejorar los diseños, incorporando elementos que eviten su accionamiento a velocidades inadecuadas.
En los aviones comerciales, todos estas superficies (primarias y secundarias) se mueven por medios eléctricos e hidráulicos. La razón es obvia; su envergadura hace que las superficies de control sean mayores; están más alejadas de los mandos que las controlan, y además soportan una presión mucho mayor que en un avión ligero. Todo esto reunido hace que se necesite una fuerza extraordinaria para mover dichas superficies, fuerza que realizan los medios mencionados.
En muchos casos su despliegue y repliegue se realiza de forma automática; mientras la presión ejercida sobre ellos es suficiente los slats permanecen retraídos, pero cuando esta presión disminuye hasta un determinado nivel (cerca de la velocidad de pérdida) los slats de despliegan de forma automática. Debido al súbito incremento o disminución (según se extiendan o replieguen) de la sustentación en velocidades cercanas a la pérdida, debemos extremar la atención cuando se vuela a velocidades bajas en aviones con este tipo de dispositivo.
Spoilers o aerofrenos
Al contrario que los anteriores, el objetivo de esta superficie es disminuir la sustentación del avión. Se emplean sobre todo en reactores que desarrollan altas velocidades y sirven para frenar el avión en vuelo, perder velocidad y facilitar el aterrizaje, ayudar a frenar en tierra, y en algunos aviones como complemento de los alerones para el control lateral y los virajes en vuelo.
Las superficies secundarias (flaps, slats, spoilers) siempre funcionan en pareja y de forma simétrica, es decir el accionamiento del mando correspondiente provoca el mismo movimiento (abajo o arriba) de las superficies en las dos alas (excepto en los movimientos de los spoilers complementando a los alerones).
Al afectar a la sustentación, a la forma del perfil, y a la superficie alar, el que funcione una superficie y no su simétrica puede suponer un grave inconveniente. Asimismo, tienen un límite de velocidad, pasada la cual no deben accionarse so pena de provocar daños estructurales.
Ha habido accidentes de aviones comerciales debido al despliegue inadvertido de alguna de estas superficies en vuelo, lo cual ha llevado a mejorar los diseños, incorporando elementos que eviten su accionamiento a velocidades inadecuadas.
En los aviones comerciales, todos estas superficies (primarias y secundarias) se mueven por medios eléctricos e hidráulicos. La razón es obvia; su envergadura hace que las superficies de control sean mayores; están más alejadas de los mandos que las controlan, y además soportan una presión mucho mayor que en un avión ligero. Todo esto reunido hace que se necesite una fuerza extraordinaria para mover dichas superficies, fuerza que realizan los medios mencionados.
El objetivo principal de estos elementos es el de permitir la operación a velocidades menores para el despegue, aterizaje y vuelo lento de las aeronaves que los utilizan.
hola ema
se esta poniendo re bueno el blog. Esta creciendo un monton, se nota que le metes ganas.
saludos
Emanuel
25/8/07